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Abstract

The transient analysis of viscoelastic helical rods subject to time-dependent loads are examined in the Laplace do-

main. The governing equations for naturally twisted and curved spatial rods obtained using the Timoshenko beam

theory are rewritten for cylindrical helical rods. The curvature of the rod axis, effect of rotary inertia and, shear and

axial deformations are considered in the formulation. The material of the rod is assumed to be homogeneous, isotropic

and linear viscoelastic. The viscoelastic constitutive equations are written in the Boltzmann–Volterra form. Ordinary

differential equations in canonical form obtained in the Laplace domain are solved numerically using the comple-

mentary functions method to calculate the dynamic stiffness matrix of the problem. The solutions obtained are

transformed to the real space using an appropriate numerical inverse Laplace transform method. Numerical results for

quasi-static and dynamic response of viscoelastic models are presented in the form of graphics.
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1. Introduction

The dynamic behaviour of helical bars and curved rods is an important engineering problem. In practice,

helical bars are used as structural elements known as helical stairs and as mechanical elements in vehicle

suspension systems and motor valve springs. To simplify the analysis, it is generally assumed that the

material is elastic. However, in reality, the materials are vicoelastic due to internal friction, and thus the

viscoelastic constitutive relations yield more realistic results than the elastic constitutive relations with

regard to the material behaviour.
In many research papers, the dynamic response of viscoelastic materials are investigated using various

models.

The application of the Laplace transform to viscoelastic beams was presented by Fl€ugge (1975). Kıral

et al. (1976) presented the equations of motion for viscoelastic curved rods, however, they did not solve the
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problem effectively. They used the transfer matrix method in their analysis. The method of maximum

degree of precision was used for Laplace inversion which provided accurate results for one period only or

for a short time.

Findley et al. (1976) used the correspondence principle and the superposition principle for solving the
governing equations of the viscoelastic beam. Christensen (1982) reported the transient response of the

viscoelastic beam using the Fourier transform. The above studies are based on the fact that the governing

equations of viscoelasticity can be converted to the equations of elasticity by integral transformations. For

complex geometries and constitutive relations, closed form solutions are often not possible and numerical

solution techniques should be adopted.

The application of the finite element method to the complex geometry has been presented by a number of

authors. White (1986) used the constitutive law of hereditary integral type, in which the time interval form

is approximated by the finite difference method to perform a finite element analysis in a quasi-static
problem. Adey and Brebbia (1973) used an approximate inversion procedure to obtain the inversion

solution of the associated elastic problem. Chen and Lin (1982) studied the dynamic response of a beam

using a creep law of time hardening to model the viscoelastic material. Yamada et al. (1974) reported the

natural frequency of a viscoelastic beam and a rod.

Chen (1995) studied the linear viscoelastic Timoshenko beam for quasi-static and dynamic response. He

assumed that the Poisson ratio is constant and only elasticity modulus is viscoelastic. The relaxation

modulus is expressed by the same Prony series for both normal stress–strain and shear stress–strain rela-

tions. The hybrid method is used to remove the time parameter using the Laplace transform and the
associated equation is solved using the finite element method.

Ak€oz and Kadıo�glu (1996) examined a mixed finite element for elastic circular beams using Gâteaux

differential. Using a similar approach Ak€oz and Kadıo�glu (1999) has studied the quasi-static and dynamic

analysis of viscoelastic Timoshenko and Euler–Bernoulli beams. Kadıo�glu and Ak€oz (1999) studied the

general forms of relaxation modulus for both Poisson ratio and Young modulus for quasi-static and dy-

namic response of circular beams. In order to remove the time derivatives from the governing equations

and boundary conditions, the method of the Laplace–Carson transform was utilised.

Ilyasov and Ak€oz (2000) examined static and dynamic behaviour of plates. The viscoelastic constitutive
equations were written in the Boltzmann–Volterra form.

Park and Schapery (1999) presented and tested a numerical method of interconversion between modulus

and compliance functions when the given and predicted functions are based on a Prony series represen-

tation of transient functions. Schapery and Park (1999) proposed and verified a simple approximate

interconversion method by examples. Park (2001) examined different approaches to the mathematical

modeling of viscoelastic dampers and compared their theoretical basis and performance.

Kim and Kim (2001) studied the parametric instability of a laminated beam subjected to a periodic

loading. The governing equations were derived from Hamilton�s principle with Bolzmann�s superposition
principle for linear viscoelastic constitutive equations.

As mentioned above the viscoelastic models are commonly used in structures like straight beams, plates

and shells. However, to the best of present authors� knowledge the viscoelastic analysis of helical bars have
not been reported yet. In this research, the application of an efficient method to the viscoelastic analysis of

helical bars will be presented.

Quasi-static and dynamic response of viscoelastic helical rods under time-dependent loads are investi-

gated in the Laplace domain. The governing equations for naturally twisted and curved spatial rods ob-

tained using the Timoshenko beam theory are rewritten for cylindrical helical rods. The curvature of
the rod axis, effect of rotary inertia and, shear and axial deformations are considered in the formulation.

The dynamic stiffness matrix of the problem is calculated in the Laplace transform space by applying the

complementary functions method in Temel and C�alım (2003) to the differential equations in canonical

form. The solutions obtained in the Laplace domain are then transformed to the time space using the
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Durbin�s inverse Laplace transform method (Durbin, 1974; Narayanan, 1979; Yerli et al., 1998). This

provides great convenience in the solution of the problems having general boundary conditions. The desired

accuracy is obtained by taking only a few elements as opposed to high number of elements (in the order of

hundreds) needed in finite element analysis. Ordinary differential equations with variable coefficients can
also be solved exactly in Laplace domain by using the complementary functions method. In the solution of

viscoelastic helical rods, the Boltzmann–Volterra theory is considered. Numerical results for elastic–static,

quasi-static, elastic–dynamic and viscoelastic dynamic responses of helical rods are presented.
2. Rod geometry

Consider a naturally curved and twisted spatial slender rod. The trajectory of geometric center G of the

rod is defined as the rod axis and its position vector at t ¼ 0 is given by r0 ¼ r0ðs; 0Þ where s is measured
from an arbitrary reference point s ¼ 0 on the axis (Fig. 1a).

Let, at any time t, a moving reference frame be defined by unit vectors t, n, b with the origin of the axis of

the rod is chosen such that
t ¼ or0ðs; tÞ
os

ð1Þ
where t, n and b are unit tangent, normal and binormal vectors respectively. The following differential

relations among the unit vectors t, n, b can be obtained with the aid of the Frenet formulas (see Sokolnikoff

and Redheffer, 1958)
ot=os ¼ vn; on=os ¼ sb� vt; ob=os ¼ �sn ð2Þ

where v and s are the curvature and the natural twist of the axis, respectively. It is noted that v is always
positive and that s is positive for a clockwise rotation about t when advanced in the increasing s-direction.
They are expressed in terms of the spatial derivatives of the position vector r0ðs; tÞ:
v ¼ o2r0

os2

����
����; s ¼ �

or0

os � o
2r0

os2 � o3r0

os3

v2
ð3Þ
For planar rods s ¼ 0, and for straight rods v ¼ s ¼ 0.
Fig. 1. The rod geometry.
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A second rectangular frame ðx1; x2; x3Þ is introduced such that the x1-axis is in the direction of t, and x2, x3
axes are the principal axes of the cross-section (Fig. 1b). Let i1, i2 and i3 be the unit vectors along x1, x2, x3.
From Fig. 1b Eq. (4) can be written.
t ¼ i1; n ¼ i2 cos h� i3 sin h; b ¼ i2 sin hþ i3 cos h ð4Þ
3. Governing equations

Let the displacement of a point on the rod axis, and the rotation of the cross-section about an axis

passing through G be denoted by U0ðs; tÞ and X0ðs; tÞ, respectively. Also, let c0ðs; tÞ and x0ðs; tÞ, stand for

extension and rotation of the unit length on the rod axis, respectively.

On the other hand, let Tðs; tÞ and Mðs; tÞ denote, respectively, the resultant of the internal stresses acting
on the cross-section, and the resultant moment obtained when Tðs; tÞ is carried to the geometric center G.
Also let pexðs; tÞ and mexðs; tÞ be the external distributed load and moment per unit length of the rod axis.

Assuming infinitesimal deformations, the equations of geometric compatibility and the equations of

motion are, respectively, given by Kıral and Ertepınar (1974).
c0 ¼ oU0

os
þ t�X0; x0 ¼ oX0

os
ð5Þ
oT0

os
þ pðexÞ ¼ pðinÞ;

oM0

os
þ t� T0 þmðexÞ ¼ mðinÞ ð6Þ
The components along the x1, x2 and x3 axes of the inertia force and moment pin and min are defined as
pðinÞi ¼ �qA
o2U 0

i

ot2
; mðinÞ

i ¼ �qIi
o2X0

i

ot2
ði ¼ 1; 2; 3Þ ð7Þ
where q is the mass density.

The relevant components of the strain tensor eij in the xi-frame are obtained in terms of relative

extension c0 and rotation x0 as (see Kıral et al., 1976)
e11 ¼ c01 � x2x0
3 þ x3x0

2

e12 ¼ 1
2
ðc02 � x3x0

1Þ
e13 ¼ 1

2
ðc03 þ x2x0

1Þ
e23 ffi 0

ð8Þ
Equations of geometric compatibility and equations of motion are derived under the assumption that the

displacements and their gradients are infinitesimal. Further, it is assumed that the largest dimension of the

cross-section is small compared to the radii of curvature and the twist of the rod axis. Also, the effect of

warping of the cross-section is ignored.

The equations of geometric compatibility (5) and the equations of motion (6) are valid irrespective of the

constitution of the rod material. Thus, there are four vectorial equations in six vectorial unknowns, namely,

U0,X0, T0,M0, c0 and x0. The remaining two equations necessary for the determination of these unknowns

are the constitutive equations.
The nature of the rod material is brought into the formula to make it adequate for the determination of

these unknowns. The material of the rod is homogeneous, isotropic and linearly viscoelastic. For later use,
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it is further assumed that there exists an initial state t ¼ 0 for which the body is stress free. Since the rod

under consideration is slender, the usual assumptions on the stresses
r22 ¼ r33 ¼ 0 ð9Þ

are imposed.
4. Constitutive equations in integral form

Constitutive equations in integral or differential forms and the interrelation between them can be found

in Eringen (1982). An equivalent stress constitutive equation of the Boltzmann–Volterra theory, in terms of
deviatoric and dilatational parts of the strain is
rij ¼ dij

Z t

0

Kðt � sÞ oerrðsÞ
os

dsþ 2

Z t

0

Gðt � sÞ
oe0ijðsÞ
os

ds ð10Þ
where the deviatoric strain components e0ij are defined by
e0ij ¼ eij � 1
3
errdij ð11Þ
in which err ¼ e11 þ e22 þ e33. The memory function KðtÞ and GðtÞ in (10) are named relation bulk modulus

and shear modulus, respectively.

The remaining components �r11, �r12, �r13 and �r23 of the transformed stress tensor are then obtained by

taking Laplace transform of (10), making use of the constraining condition (9) and noting that e0ii ¼ 0. They

are
�r11 ¼ zE�e11; �r12 ¼ 2zG�e12; �r13 ¼ 2zG�e13; �r23 ¼ 0 ð12Þ
where z is the Laplace transform parameter, and the relaxation Young�s modulus EðtÞ and the Poisson�s
ratio tðtÞ, in the transform domain, are defined by
E ¼ 9KG

3K þ G
; �t ¼ 3K � 2G

6K þ 2G
ð13Þ
Note that the inverse Laplace transformation of Eqs. (12), with the help of convolution theorem in Spiegel

(1965), yields
r11 ¼
Z t

0

Eðt � sÞ oe11ðsÞ
os

ds

r12 ¼ 2

Z t

0

Gðt � sÞ oe12ðsÞ
os

ds

r13 ¼ 2

Z t

0

Gðt � sÞ oe13ðsÞ
os

ds

r22 ¼ r33 ¼ r23 ¼ 0

ð14Þ
The components in xi––rectangular Cartesian frame of the stress resultants Tðs; tÞ and moment resultants

Mðs; tÞ are expressed in terms of the stresses on the cross-section as
Ti ¼
Z
A
r1i dA ði ¼ 1; 2; 3Þ ð15Þ
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M1 ¼
Z
A
ðx2r13 � x3r12ÞdA

M2 ¼
Z
A
x3r11 dA

M3 ¼ �
Z
A
x2r11 dA

ð16Þ
where A is area of the cross-section considered. After taking the Laplace transform of Eqs. (15), (16) and

(8), in variable t, and substituting (11) in (12), then a subsequent substitution of the resulting equation into

(15) and (16) yield the resultant constitutive equations in the transform domain as
T 1 ¼ zEA�c01; T 2 ¼ zGAc02; T 3 ¼ zGAc03 ð17Þ

M1 ¼ zGI1 �x0
1; M2 ¼ zEI2 �x0

2; M3 ¼ zEI3 �x0
3 ð18Þ
Note that, by comparing Eqs. (17) and (18) with the corresponding elasticity equations, the transformed

viscoelastic resultant constitutive equations may be obtained directly by replacing the Young�s modulus E
by zE and shear modulus G by zG. Also note that, the inverse transform of Eqs. (17) and (18), if they exist,
with the use of convolution theorem, are given by
T1 ¼ A
Z t

0

Eðt � sÞ oc
0
1

os
ds; Ti ¼ A

Z t

0

Gðt � sÞ oc
0
i

os
ds ði ¼ 2; 3Þ ð19Þ

M1 ¼ I1

Z t

0

Gðt � sÞ ox
0
1

os
ds; Mi ¼ Ii

Z t

0

Eðt � sÞ ox
0
i

os
ds ði ¼ 2; 3Þ ð20Þ
which are the resultant constitutive equations in the time domain.
5. Laplace transforms of the governing equations

For the case of forced vibrations, a column matrix Yðs; tÞ is introduced as
Yðs; tÞ ¼ fU 0
1 ;U

0
2 ;U

0
3 ;X

0
1;X

0
2;X

0
3; T

0
1 ; T

0
2 ; T

0
3 ;M

0
1 ;M

0
2 ;M

0
3g

T ð21Þ
Laplace transform of Eq. (21) with respect to time is
Yðs; zÞ ¼ L½Yðs; tÞ� ð22Þ

where Laplace transform parameter z is a complex number. With the aid of these definitions, Eqs. (5) and

(6) are reduced to a set of 12 first order non-homogeneous ordinary differential equations
dYðs; zÞ
ds

¼ Fðs; zÞYðs; zÞ þ Bðs; zÞ ð23Þ
Some of the elements of Fðs; zÞ are obtained by applying Laplace transform of the following second

derivatives
L qA
o2U0

k
ot2

h i
¼ qA z2U

0

k � zU 0
k ðs; 0Þ �

oU0
k ðs;0Þ
ot

h i
L qIk

o2X0
k

ot2

h i
¼ qIk z2 �X0

k � zX0
kðs; 0Þ �

oX0
k ðs;0Þ
ot

h i ðk ¼ 1; 2; 3Þ ð24Þ
The second and third terms on the right-hand side of Eq. (24) are the initial conditions given at t ¼ 0. The

elements of the column matrix Bðs; zÞ are
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Biðs; zÞ ¼ 0 ði ¼ 1; 2; . . . ; 6Þ

B6þjðs; zÞ ¼ �ð�pðexÞk Þ � qA zU 0
k ðs; 0Þ

�
þ oU 0

k ðs; 0Þ
ot

�
ðj ¼ 1; 2; 3Þ

B9þjðs; zÞ ¼ �ð�mðexÞ
k Þ � qIk zX0

kðs; 0Þ
�

þ oX0
kðs; 0Þ
ot

�
ðk ¼ 1; 2; 3Þ

ð25Þ
Note that the initial conditions present in Eqs. (24) are now included in the load vector Bðs; zÞ.
6. Special cases

The spatially curved system is taken as a special case of a helical bar. The parametric equation of a helix

is given by Temel and C�alım (2003) (see Fig. 2)
x ¼ a cos/; y ¼ a sin/; z ¼ h/ ð26Þ
where / is the horizontal angle of the helix. The infinitesimal length element of the helix is defined as
c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ h2

p
; ds ¼ cd/; cos a ¼ a

c
; sin a ¼ h

c
ð27Þ
where a and a are pitch angle and centerline radius of the helix, respectively. The curvatures of a cylindrical

helical spring are
v ¼ a
c2

¼ constant; s ¼ h
c2

¼ constant ð28Þ
Fig. 2. Geometry of a cylindrical helix.
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The relationship between the moving axis ðt; n; bÞ and the fixed reference frame ði; j; kÞ are (Fig. 2)
fV gTtnb ¼ ½B�fV gTijk
Vt
Vn
Vb

8<
:

9=
; ¼

�ða=cÞ sin/ ða=cÞ cos/ ðh=cÞ
� cos/ � sin/ 0

ðh=cÞ sin/ �ðh=cÞ cos/ ða=cÞ

2
4

3
5 Vi

Vj
Vk

8<
:

9=
; ð29Þ
Non-dimensional parameters in Laplace domain are defined as
Ui ¼
1

c
U 0

i ; Xi ¼ X0
i ; T i ¼

c2

EIn
T 0
i ; Mi ¼

c
EIn

M0
i ði ¼ t; n; bÞ ð30Þ
Assuming that the centroid and the shear center of cross-section coincide, the n, b axes become the principal

axes and the effect of warping of the cross-section is ignored. Now, equations obtained as a result of

elimination of c0 and x0 between the transformed equations of compatibility (5) and the transformed

constitutive equations (17) and (18) together with the transformed equations of motion (6) form the

governing equations of the dynamic response of initially curved and twisted viscoelastic bars. Finally, using
Eqs. (27), (28), (30), the governing equations in canonical form are given as follows
dUt

d/
¼ a

c
Un þ

EIn
zEAc2

T t ð31aÞ

dUn

d/
¼ � a

c
Ut þ

h
c
Ub þ Xb þ

anEIn
zGAc2

T n ð31bÞ

dUb

d/
¼ � h

c
Un � Xn þ

abEIn
zGAc2

T b ð31cÞ

dXt

d/
¼ a

c
Xn þ

EIn
zGIt

Mt ð31dÞ

dXn

d/
¼ � a

c
Xt þ

h
c
Xb þ

E

zE
Mn ð31eÞ

dXb

d/
¼ � h

c
Xn þ

EIn
zEIb

Mb ð31fÞ

dT t

d/
¼ qAc4z2

EIn
Ut þ

a
c
T n þ B7 ð31gÞ

dT n

d/
¼ qAc4z2

EIn
Un �

a
c
T t þ

h
c
T b þ B8 ð31hÞ

dT b

d/
¼ qAc4z2

EIn
Ub �

h
c
T n þ B9 ð31iÞ

dMt

d/
¼ qItc2z2

EIn
Xt þ

a
c
Mn þ B10 ð31jÞ

dMn

d/
¼ qc2z2

E
Xn þ T b �

a
c
Mt þ

h
c
Mb þ B11 ð31kÞ
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dMb

d/
¼ qIbc2z2

EIn
Xb � T n �

h
c
Mn þ B12 ð31lÞ
Irrespective of the rod geometry, the following four cases may now be distinguished,

Case 1: static loading, elastic material,

Case 2: static loading, viscoelastic material (quasi-static case),

Case 3: dynamic loading, elastic material,

Case 4: dynamic loading, viscoelastic material.

In the cases of static loading, the terms including mass density in Eqs. (31g)–(31l) become null, irre-

spective of the rod material being elastic or viscoelastic. When the rod material is viscoelastic, the Young�s
modulus E and shear modulus G is replaced by zE and zG.
7. Solutions of the differential equations with the complementary functions method

Eqs. (31a)–(31l) make up a set of 12 simultaneous differential equations with constant coefficients. Each

one of these equations involves first-order derivatives with respect to position. The relationships given for

the dynamic loading case in the Laplace space in Temel and C�alım (2003) are modified to be used for the

viscoelastic material cases. In matrix notation, Eqs. (31a)–(31l) can be expressed as
dYð/; zÞ
d/

¼ Fð/; zÞYð/; zÞ þ Bð/; zÞ ð32Þ
For the case of spatial bar, the elements of state vector are defined as
Yð/; zÞ ¼ fUð/; zÞ;Xð/; zÞ;Tð/; zÞ;Mð/; zÞgT ð33Þ
The complementary functions method is based on the principle of solving Eq. (33) with the aid of initial

conditions. This method is basically the reduction of two-point boundary value problems to the numerical

solution of initial-value problems which are much more suitable for programming. The general solution of

Eq. (33), is given by
Yð/; zÞ ¼
X12
m¼1

CmðU
ðmÞð/; zÞÞ þ Vð/; zÞ ð34Þ
where U
ðmÞð/; zÞ is the complementary solution such that its mth component is equal to 1, whereas all the

others are 0. Vð/; zÞ is the inhomogeneous solution with all 0 initial conditions, the integration constants Cm

will be determined from the boundary conditions at both ends.
8. Determination of the dynamic stiffness matrix

The element equation is given in the Laplace domain by
f�pg ¼ ½�k�f�dg þ f�f g ð35Þ
There are six degrees of freedom at each node, three of these six are translations and others are rotations.
Letting i stand for the beginning and j for the end of an element, the end displacements and the end forces

are given as



1614 B. Temel / International Journal of Solids and Structures 41 (2004) 1605–1624
f�dgT ¼ fUð/i; zÞ;Xð/i; zÞ;Uð/j; zÞ;Xð/j; zÞg ð36Þ

f�pgT ¼ fTð/i; zÞ;Mð/i; zÞ;Tð/j; zÞ;Mð/j; zÞg ð37Þ
In order to determine the element stiffness matrix, the end displacements of the element as defined in (36)

are equated to unity for any one of the 12 directions while keeping the others 0. This is done 12 times using

each equation. From the homogeneous solution of the system (31), the element end forces are obtained, and

these forces are incorporated into the element dynamic stiffness matrix.

The fixed-end forces are computed from (31) by taking all the end displacements to be equal to 0 as
f�f gT ¼ f�Tð/i; zÞ;�Mð/i; zÞ;Tð/j; zÞ;Mð/j; zÞg ð38Þ
Fig. 3. (a) A cantilever helical rod; (b) type of dynamic loads.

0

2

4

6

8

10

12

14

16

18

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (sec.)

N
on

di
m

en
si

on
al

 U
z 

di
sp

la
ce

m
en

t

Present Study(DT=0.04; N=64 ) Present Study(DT=0.02; N=128 )
Present Study(DT=0.005;N=512 )
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For the transformation to the common reference system, the following equations are used
b�kcijk ¼ ½T �Tb�kctnb½T � ð39Þ
f�f gijk ¼ ½T �Tf�f gtnb ð40Þ
where the transformation matrix ½T � is given by
½T � ¼

½Bð/iÞ� ½0� ½0� ½0�
½0� ½Bð/iÞ� ½0� ½0�
½0� ½0� ½Bð/jÞ� ½0�
½0� ½0� ½0� ½Bð/jÞ�

2
664

3
775

12�12

ð41Þ
and ½B� is defined in Eq. (29).
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In this study, both the element dynamic stiffness matrix b�kc and the fixed-end forces f�f g are determined

by solving Eq. (31) by the complementary functions method in the Laplace domain. The system of

equations of motion can then be assembled from the element dynamic stiffness matrices and end forces as
Fig. 7.

load. (
½KðzÞ�fDg ¼ fPðzÞg ð42Þ
where ½KðzÞ� and fPðzÞg are the system dynamic stiffness matrix and the load vector. fDg is the vector of

unknown displacements of the system.
9. Verification of the proposed model

An elastic cantilever helical rod shown in Fig. 3 is analyzed first to determine the effect of time increment

and Laplace transform parameter. The vertical displacement of the free end under a step load is presented

in Fig. 4. It is obvious that results obtained using a coarse time increment (DT ¼ 0:04) along with fewer

Laplace transform parameter overlap exactly the results obtained using finer increments and higher

parameters which indicates the efficiency of the present model. Fig. 5 shows the displacement results ob-
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Fig. 7 (continued)
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tained via the finite element program ANSYS 1 using 81 straight-beam elements. It can be seen that time

increments of 0.005 and finer had to be considered for consistent results. The comparison of proposed

model with ANSYS is done in Fig. 6. An exact match is obtained by using a single element and a time

increment of 0.04 in the present model as opposed to 81 elements and much finer increment of 0.0003 in

ANSYS. The material and geometric properties used are: d ¼ 12 cm, a ¼ 25:52�, a ¼ 200 cm,
E ¼ 2:06� 1011 N/m2, q ¼ 7850 kg/m3 and m ¼ 0:3.
10. Numerical example

In this study, a general-purpose computer program is coded in FORTRAN77 for time-dependent loads

to analyse quasi-static and dynamic response of cylindrical helical rods made of linear viscoelastic mate-

rials. Butcher�s fifth-order Runge–Kutta algorithm in Chapra and Canale (1998) is used for the solution of

the initial-value problem based on the complementary function method. Forty steps of integration are used
1 ANSYS Swanson Analysis System, Inc., 201 Johnson Road, Houston, PA 15342-1300, USA.
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in the analysis. The Durbin�s inverse Laplace transform (see Appendix A, Durbin, 1974; Narayanan, 1979)

is applied for transformation from the Laplace domain to the time domain.

The viscoelastic characteristics of the rod material is denoted in the form by Kıral et al. (1976)
Fig. 8.

fixed e

versus
GðtÞ ¼ G0½1þ BExpð�t=kÞ�; KðtÞ ¼ K0 ð43Þ
with their Laplace transforms
GðzÞ ¼ G0

1

z

 
þ B
zþ 1

k

!
; KðzÞ ¼ K0

z
ð44Þ
where k (lambda) is the relaxation time, G0 is the elastic shear constant, K0 is the elastic bulk modulus and

B ¼ 20.

Example 1. A cantilever helical rod is now considered. The parameters used in this example are those used

by Temel and C�alım (2003) for the elastic material. Various dynamic loads are applied on the free end of the

rod. Material and geometrical properties are: d ¼ 12 cm, a ¼ 25:52�, a ¼ 200 cm, E ¼ 2:06� 1011 N/m2,
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(a) Vertical displacement versus time at the free end for rectangular impulsive load. (b) Vertical shear force versus time at the
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time at the fixed end for rectangular impulsive load.
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q ¼ 7850 kg/m3 and m ¼ 0:3 (see Fig. 3). Various dynamic loads with the amplitude P0 ¼ 106 N are applied

vertically at the free end of the rod. A time increment Dt of 0.02 s is used in the calculations.
Fig. 9. (a) A fixed-ended helical rod; (b) type of dynamic loads.
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Non-dimensional vertical displacement at the free end and non-dimensional shear force, bending mo-

ment at the fixed end are shown in Figs. 7a–d and 8a–d for different loading cases.

The figures include, static, elastic–dynamic, quasi-static and viscoelastic cases for various damping ra-

tios. As expected, the elastic–dynamic response oscillates about the static state. The quasi-static response
approaches the static state with time. In the viscoelastic case, the response of the bar dies out with time. The

effect of the damping ratio is obvious; increasing the damping ratio causes the response to reach the static

response much faster.

The dynamic behaviour of the viscoelastic helical bar will eventually disappear and it will approach the

static state. The moment Mz is equal to 0 under static loads. However, in the case of dynamic loads, due to

inertia forces it assumes values different from 0 (see Figs. 7d and 8d).

Example 2. A fixed-ended helical rod shown in Fig. 9 is now considered. The rod has a circular cross-section
with the diameter d ¼ 12 cm. The pitch angle and radius of the helix circle are chosen as a ¼ 25:52� and
a ¼ 200 cm, respectively. Material properties are: E ¼ 2:06� 1011 N/m2, q ¼ 7850 kg/m3 and m ¼ 0:3.
Various dynamic loads with the amplitude P0 ¼ 5� 105 N are applied vertically on the arc-length mid-point

of the rod. A time increment Dt of 0.02 s is used in the calculations.
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Fig. 10. (a) Vertical displacement versus time at the arc-length mid-point for step load. (b) Vertical shear force versus time at the fixed

end for step load. (c) My moment versus time at the fixed end for step load. (d) Mz moment versus time at the fixed end for step load.
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Non-dimensional vertical displacement at the arc-length mid-point of the rod and non-dimensional

shear force, bending moments at the fixed end are shown in Figs. 10a–d and 11a–d for different loading
cases.

The conclusions derived from the previous example can be reiterated here in that the dynamic behaviour

of the viscoelastic helical bar will also eventually disappear and it will approach its the static state. It should

be emphasized again that the aim of the present work is to demonstrate the application of an efficient

method to the viscoelastic case rather than reconfirming the expected viscoelestic response of helical bars.
11. Discussions and conclusions

The quasi-static and dynamic response of cylindrical helical rods made of linear viscoelastic materials are

investigated using an efficient method of analysis in the Laplace domain in this study.

The dynamic stiffness matrix has been calculated in the Laplace domain by applying the complementary
functions method to the differential equations in canonical form. This provides great convenience in the

solution of the physical problems having general boundary conditions. Another advantage of using the

complementary functions method-based solution is that the helical rods with variable cross-section and

geometry, which yield ordinary differential equations having variable coefficients, can also be considered.
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Fig. 11. (a) Vertical displacement versus time at the arc-length mid-point for triangular impulsive load. (b) Vertical shear force

versus time at the fixed end for triangular impulsive load. (c) My moment versus time at the fixed end for triangular impulsive load.

(d) Mz moment versus time at the fixed end for triangular impulsive load.
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The differential equations can be solved by using the complementary functions method with sufficient

accuracy as required with an appropriate integration step-size.

The quasi-static and dynamic behaviour of cylindrical helical rods are investigated by using the Boltz-

mann–Volterra theory for viscoelastic materials. The dynamic behaviour of the viscoelastic helical bar will

disappear after some time, approaching the static state. The time to reach the static behaviour is pro-

portional to the damping coefficient. The damping effects in viscoelastic material reduce the peak values of
the dynamic response.

Appendix A. Modified durbin�s inverse Laplace transform method

A numerical inverse Laplace transform technique is necessary to obtain the values in the time domain.

For this purpose, Durbin�s inverse Laplace transform technique based on the fast Fourier transform (FFT)
is used by Durbin (1974). Durbin�s formulation for inverse Laplace transform is summarized as follows:
f ðtjÞ ffi
2eajDt

T

"
� 1

2
RefF ðaÞg þRe

XN�1

k¼0

ðF ðzkÞLkÞe i2pNð Þjk
( )#

ðj ¼ 0; 1; 2; . . . ;N � 1Þ ðA:1Þ



-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (sec.)

N
on

di
m

en
si

on
al

 M
y 

m
om

en
t

Static Elastic-Dynamic

Viscoelastic (lamda=0.0002) Viscoelastic (lamda=0.002)

Viscoelastic (lamda=0.02)

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (sec.)

N
on

di
m

en
si

on
al

 M
z 

m
om

en
t

Static Elastic-Dynamic
Viscoelastic (lamda=0.0002) Viscoelastic (lamda=0.002)

Viscoelastic (lamda=0.02)

(c)

(d)

Fig. 11 (continued)

B. Temel / International Journal of Solids and Structures 41 (2004) 1605–1624 1623
in which zk ¼ aþ ik 2p
T , N ¼ T=Dt where zk is the kth Laplace transform parameter, T is the solution interval

and Dt is the time increment. The selection of constant �a� in numerical inverse Laplace transforms is ex-
plained in Durbin (1974). It is implied that if the value of �aT � is chosen in the range 5–10, good results are

obtained. Therefore, for the numerical examples presented in this paper the value of �aT � is generally taken

as �6�. Finally, results can be modified by multiplying each term Lanczos (Lk) factors to obtain better results

in the Laplace domain as suggested by Narayanan (1979).
Lk ¼
sin kp

N

� �
kp
N

� � ðA:2Þ
when k ¼ 0, L0 ¼ 1.
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