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Abstract

The transient analysis of viscoelastic helical rods subject to time-dependent loads are examined in the Laplace do-
main. The governing equations for naturally twisted and curved spatial rods obtained using the Timoshenko beam
theory are rewritten for cylindrical helical rods. The curvature of the rod axis, effect of rotary inertia and, shear and
axial deformations are considered in the formulation. The material of the rod is assumed to be homogeneous, isotropic
and linear viscoelastic. The viscoelastic constitutive equations are written in the Boltzmann—Volterra form. Ordinary
differential equations in canonical form obtained in the Laplace domain are solved numerically using the comple-
mentary functions method to calculate the dynamic stiffness matrix of the problem. The solutions obtained are
transformed to the real space using an appropriate numerical inverse Laplace transform method. Numerical results for
quasi-static and dynamic response of viscoelastic models are presented in the form of graphics.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The dynamic behaviour of helical bars and curved rods is an important engineering problem. In practice,
helical bars are used as structural elements known as helical stairs and as mechanical elements in vehicle
suspension systems and motor valve springs. To simplify the analysis, it is generally assumed that the
material is elastic. However, in reality, the materials are vicoelastic due to internal friction, and thus the
viscoelastic constitutive relations yield more realistic results than the elastic constitutive relations with
regard to the material behaviour.

In many research papers, the dynamic response of viscoelastic materials are investigated using various
models.

The application of the Laplace transform to viscoelastic beams was presented by Fliigge (1975). Kiral
et al. (1976) presented the equations of motion for viscoelastic curved rods, however, they did not solve the
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problem effectively. They used the transfer matrix method in their analysis. The method of maximum
degree of precision was used for Laplace inversion which provided accurate results for one period only or
for a short time.

Findley et al. (1976) used the correspondence principle and the superposition principle for solving the
governing equations of the viscoelastic beam. Christensen (1982) reported the transient response of the
viscoelastic beam using the Fourier transform. The above studies are based on the fact that the governing
equations of viscoelasticity can be converted to the equations of elasticity by integral transformations. For
complex geometries and constitutive relations, closed form solutions are often not possible and numerical
solution techniques should be adopted.

The application of the finite element method to the complex geometry has been presented by a number of
authors. White (1986) used the constitutive law of hereditary integral type, in which the time interval form
is approximated by the finite difference method to perform a finite element analysis in a quasi-static
problem. Adey and Brebbia (1973) used an approximate inversion procedure to obtain the inversion
solution of the associated elastic problem. Chen and Lin (1982) studied the dynamic response of a beam
using a creep law of time hardening to model the viscoelastic material. Yamada et al. (1974) reported the
natural frequency of a viscoelastic beam and a rod.

Chen (1995) studied the linear viscoelastic Timoshenko beam for quasi-static and dynamic response. He
assumed that the Poisson ratio is constant and only elasticity modulus is viscoelastic. The relaxation
modulus is expressed by the same Prony series for both normal stress—strain and shear stress—strain rela-
tions. The hybrid method is used to remove the time parameter using the Laplace transform and the
associated equation is solved using the finite element method.

Akoz and Kadioglu (1996) examined a mixed finite element for elastic circular beams using Gateaux
differential. Using a similar approach Akoz and Kadioglu (1999) has studied the quasi-static and dynamic
analysis of viscoelastic Timoshenko and Euler-Bernoulli beams. Kadioglu and Akoz (1999) studied the
general forms of relaxation modulus for both Poisson ratio and Young modulus for quasi-static and dy-
namic response of circular beams. In order to remove the time derivatives from the governing equations
and boundary conditions, the method of the Laplace—Carson transform was utilised.

Ilyasov and Akoz (2000) examined static and dynamic behaviour of plates. The viscoelastic constitutive
equations were written in the Boltzmann—Volterra form.

Park and Schapery (1999) presented and tested a numerical method of interconversion between modulus
and compliance functions when the given and predicted functions are based on a Prony series represen-
tation of transient functions. Schapery and Park (1999) proposed and verified a simple approximate
interconversion method by examples. Park (2001) examined different approaches to the mathematical
modeling of viscoelastic dampers and compared their theoretical basis and performance.

Kim and Kim (2001) studied the parametric instability of a laminated beam subjected to a periodic
loading. The governing equations were derived from Hamilton’s principle with Bolzmann’s superposition
principle for linear viscoelastic constitutive equations.

As mentioned above the viscoelastic models are commonly used in structures like straight beams, plates
and shells. However, to the best of present authors’ knowledge the viscoelastic analysis of helical bars have
not been reported yet. In this research, the application of an efficient method to the viscoelastic analysis of
helical bars will be presented.

Quasi-static and dynamic response of viscoelastic helical rods under time-dependent loads are investi-
gated in the Laplace domain. The governing equations for naturally twisted and curved spatial rods ob-
tained using the Timoshenko beam theory are rewritten for cylindrical helical rods. The curvature of
the rod axis, effect of rotary inertia and, shear and axial deformations are considered in the formulation.
The dynamic stiffness matrix of the problem is calculated in the Laplace transform space by applying the
complementary functions method in Temel and Calim (2003) to the differential equations in canonical
form. The solutions obtained in the Laplace domain are then transformed to the time space using the



B. Temel | International Journal of Solids and Structures 41 (2004) 1605-1624 1607

Durbin’s inverse Laplace transform method (Durbin, 1974; Narayanan, 1979; Yerli et al., 1998). This
provides great convenience in the solution of the problems having general boundary conditions. The desired
accuracy is obtained by taking only a few elements as opposed to high number of elements (in the order of
hundreds) needed in finite element analysis. Ordinary differential equations with variable coefficients can
also be solved exactly in Laplace domain by using the complementary functions method. In the solution of
viscoelastic helical rods, the Boltzmann—Volterra theory is considered. Numerical results for elastic—static,
quasi-static, elastic-dynamic and viscoelastic dynamic responses of helical rods are presented.

2. Rod geometry

Consider a naturally curved and twisted spatial slender rod. The trajectory of geometric center G of the
rod is defined as the rod axis and its position vector at ¢ = 0 is given by r’ = r’(s, 0) where s is measured
from an arbitrary reference point s = 0 on the axis (Fig. 1a).

Let, at any time ¢, a moving reference frame be defined by unit vectors t, n, b with the origin of the axis of
the rod is chosen such that

_o(s, 1)
t=—0 (1)

where t, n and b are unit tangent, normal and binormal vectors respectively. The following differential
relations among the unit vectors t, n, b can be obtained with the aid of the Frenet formulas (see Sokolnikoff
and Redheffer, 1958)

0t/0s = yn, On/Os =1tb—yt, 0Ob/Os = —1n (2)

where y and 7 are the curvature and the natural twist of the axis, respectively. It is noted that y is always
positive and that 7 is positive for a clockwise rotation about t when advanced in the increasing s-direction.
They are expressed in terms of the spatial derivatives of the position vector r’(s, ¢):

2.0 a0 2 30

I or _ 35 0s? ds3

1= ) T=— (3)
0s2 1>

For planar rods t = 0, and for straight rods y = t = 0.

Fig. 1. The rod geometry.
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A second rectangular frame (x;,x,,x3) is introduced such that the x;-axis is in the direction of t, and x,, x;
axes are the principal axes of the cross-section (Fig. 1b). Let iy, i, and i; be the unit vectors along xi, x,, x3.
From Fig. 1b Eq. (4) can be written.

t=1i;, n=i,cosf0—i3sinf, b=1i,sinf +1i3cosl 4)

3. Governing equations

Let the displacement of a point on the rod axis, and the rotation of the cross-section about an axis
passing through G be denoted by U’(s, 7) and Q°(s, 1), respectively. Also, let y°(s,7) and (s, 7), stand for
extension and rotation of the unit length on the rod axis, respectively.

On the other hand, let T(s, ) and M(s, ¢) denote, respectively, the resultant of the internal stresses acting
on the cross-section, and the resultant moment obtained when T(s, ¢) is carried to the geometric center G.
Also let p™*(s, ) and m*™(s, ¢) be the external distributed load and moment per unit length of the rod axis.

Assuming infinitesimal deformations, the equations of geometric compatibility and the equations of
motion are, respectively, given by Kiral and Ertepinar (1974).

ou’ oQ’
0 - QO 0 _ ==
v e +tx Q°, ) 3 (5)
oT’ . oM’ .
& T p = pi, = X T + m®) = m™ (6)
A A

The components along the x;, x, and x3 axes of the inertia force and moment p™ and m™ are defined as

in aZUO in 6290 .
A" =—pAdst m = —pl—st (i=1,2.3) (7)

where p is the mass density.
The relevant components of the strain tensor e; in the x;-frame are obtained in terms of relative
extension 7° and rotation o’ as (see Kiral et al., 1976)

0 0 0
— X3 + X300,

e ="
(“/3 - x3cu(1))
(

(8)

_ 1
€12 =3
1

Equations of geometric compatibility and equations of motion are derived under the assumption that the
displacements and their gradients are infinitesimal. Further, it is assumed that the largest dimension of the
cross-section is small compared to the radii of curvature and the twist of the rod axis. Also, the effect of
warping of the cross-section is ignored.

The equations of geometric compatibility (5) and the equations of motion (6) are valid irrespective of the
constitution of the rod material. Thus, there are four vectorial equations in six vectorial unknowns, namely,
U°, Q°, T°, M, 4° and ©°. The remaining two equations necessary for the determination of these unknowns
are the constitutive equations.

The nature of the rod material is brought into the formula to make it adequate for the determination of
these unknowns. The material of the rod is homogeneous, isotropic and linearly viscoelastic. For later use,
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it is further assumed that there exists an initial state # = 0 for which the body is stress free. Since the rod
under consideration is slender, the usual assumptions on the stresses
07 = 033 = O (9)

are imposed.

4. Constitutive equations in integral form

Constitutive equations in integral or differential forms and the interrelation between them can be found
in Eringen (1982). An equivalent stress constitutive equation of the Boltzmann—Volterra theory, in terms of
deviatoric and dilatational parts of the strain is

‘ ¢ Oe’.
GU_:%/ K(t— 1) Oer(7) dr+2/ G(t_f)ﬂdf (10)
- 0 ot 0 ot

where the deviatoric strain components e, are defined by
e;/. =€ — %erréij (11)

in which e,. = ej; + ey + e33. The memory function K(¢) and G(¢) in (10) are named relation bulk modulus
and shear modulus, respectively.

The remaining components &, 612, 613 and 6,3 of the transformed stress tensor are then obtained by
taking Laplace transform of (10), making use of the constraining condition (9) and noting that e/, = 0. They
are

on = zEey, 61 =2:Gepn, 413 =2zGe;;, Gy =0 (12)

where z is the Laplace transform parameter, and the relaxation Young’s modulus E(z) and the Poisson’s
ratio v(¢), in the transform domain, are defined by
—  9KG 3K -2G
3K+ G 6K +2G

Note that the inverse Laplace transformation of Eqs. (12), with the help of convolution theorem in Spiegel
(1965), yields

o1l :/E(t—f)ae”(r)dr
0

ot
! 66‘12(‘[)
012—2/0 G(t—1) o dr

o ! 66‘13(1')
013 = 2/0 G(t— ‘E)Tdf

0p =033 =03 =0

The components in x,—rectangular Cartesian frame of the stress resultants T(s, #) and moment resultants
M(s, ¢) are expressed in terms of the stresses on the cross-section as

T,-:/al,-dA (i=1,2,3) (15)
A
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M, = /(X2013 — Xx301,)d4

A

MQZ/X3O'11dA (16)
A

M3 = —/XzO’lldA
A

where 4 is area of the cross-section considered. After taking the Laplace transform of Egs. (15), (16) and
(8), in variable ¢, and substituting (11) in (12), then a subsequent substitution of the resulting equation into
(15) and (16) yield the resultant constitutive equations in the transform domain as

T] = ZEA’#;, TQ = ZEA?g, Tz = ZEA?? (17)

M] :zalla")?, Mz :Zilzd)g, M3 :ZEI_a,(I)g (18)

Note that, by comparing Egs. (17) and (18) with the corresponding elasticity equations, the transformed
viscoelastic resultant constitutive equations may be obtained directly by replacing the Young’s modulus £
by zE and shear modulus G by zG. Also note that, the inverse transform of Eqs. (17) and (18), if they exist,
with the use of convolution theorem, are given by

t a,O t 60
leA/E(t—r)%dr, T,-:A/ G- e (1=2,3) (19)
0 T 0 T
t 0 t 0
MI:II/ G(t—r)?dn M,-:I,-/E(t—r)aw’ dr (i=2,3) (20)
0 T 0 ot

which are the resultant constitutive equations in the time domain.

5. Laplace transforms of the governing equations

For the case of forced vibrations, a column matrix Y(s,¢) is introduced as
Y(S7 t) = {U{)7 U;’ Ug)’ Q?’ Q(Z)’ 927 TIO’ TZO’ T307 M?’ Mg’ M?}T (21)

Laplace transform of Eq. (21) with respect to time is

Y(s,2) = L[Y(s,1)] (22)

where Laplace transform parameter z is a complex number. With the aid of these definitions, Egs. (5) and
(6) are reduced to a set of 12 first order non-homogeneous ordinary differential equations

% =F(s,2)Y(s,z) + B(s,z2) (23)

Some of the elements of F(s,z) are obtained by applying Laplace transform of the following second
derivatives

(2 0 T d OSA
o] - T8 ) -

200 — 0/
L|pti Gt | = pli |29 — 20(s,0) - 52

} (k=1,2,3) (24)

ot

The second and third terms on the right-hand side of Eq. (24) are the initial conditions given at ¢ = 0. The
elements of the column matrix B(s,z) are
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Bi(s,2)=0 (i=1,2,...,6)

— ox U (s,0 .

By j(s,z) = — p) — pA |:ZU1?(S,O) —&—%] (j=1,2,3) (25)
0

Bos(s.2) = —(m™) — pl; {291‘3(& 0) + %} (k=1,23)

Note that the initial conditions present in Egs. (24) are now included in the load vector B(s, z).

6. Special cases

The spatially curved system is taken as a special case of a helical bar. The parametric equation of a helix
is given by Temel and Calim (2003) (see Fig. 2)

x=acos¢, y=asind, z=ho (26)
where ¢ is the horizontal angle of the helix. The infinitesimal length element of the helix is defined as
. h
c=vVa+h, ds=cdo, cosoczg, sina = — (27)

where o and « are pitch angle and centerline radius of the helix, respectively. The curvatures of a cylindrical
helical spring are

a h
1= = constant, T=—= constant (28)
C C

Fig. 2. Geometry of a cylindrical helix.
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The relationship between the moving axis (t,n,b) and the fixed reference frame (i, j, k) are (Fig. 2)

KY  [~afe)sing  (afc)cosd  (h/e)] (Vi
T T .
o = BV} V, » = —cos¢ —sin ¢ 0 1% (29)
Vs (h/c)sing  —(h/c)cosd (a/c)] \ Vi
Non-dimensional parameters in Laplace domain are defined as
v-to oo T—CZTO Mo=SM (i=tnb) (30)
l_c i [ i l_E]ni) I_Eln i — i

Assuming that the centroid and the shear center of cross-section coincide, the n, b axes become the principal
axes and the effect of warping of the cross-section is ignored. Now, equations obtained as a result of
elimination of y* and ®° between the transformed equations of compatibility (5) and the transformed
constitutive equations (17) and (18) together with the transformed equations of motion (6) form the
governing equations of the dynamic response of initially curved and twisted viscoelastic bars. Finally, using
Egs. (27), (28), (30), the governing equations in canonical form are given as follows

dU, a— El, —

=20, + =" 31
d¢ ¢ T (31a)
dU a— h— —  o,El —

= - Q =T 1
d¢ cUt+cUb+ b+z 42" (316)
dUb h - b ln—
S g, g, + 20T 31
a0 T Gaca (31c)

7:*5,14*?]71 (31d)

dQ a— h— E

P 20,4+ -Qy+ =M 1
d¢ c t+c b+zE " (31e)
Q — EI, _
4 g4 "M, (31f)

dT, pAc*ZP— a= h- —

E:pTU,,—ET,+ETb+Bg (31h)
dT Ac*Z? —  h— — )
d—d)l’:pTUb_ETn+B9 (311)
dMm, 1,c*2* a —

dd)t:pé] Q[-i- Mn+B10 (31_])
dM, pc?—- _— a— h—

i - E Qn+T];_EMt+EMh+Bll (31k)
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dM, pl*?—  —  h—
Tq;):pgl Q,~T,~ "M, +By (311)

Irrespective of the rod geometry, the following four cases may now be distinguished,

Case 1: static loading, elastic material,

Case 2: static loading, viscoelastic material (quasi-static case),
Case 3: dynamic loading, elastic material,

Case 4: dynamic loading, viscoelastic material.

In the cases of static loading, the terms including mass density in Eqgs. (31g)—(311) become null, irre-
spective of the rod material being elastic or viscoelastic. When the rod material is viscoelastic, the Young’s
modulus £ and shear modulus G is replaced by zE and zG.

7. Solutions of the differential equations with the complementary functions method

Egs. (31a)—(311) make up a set of 12 simultaneous differential equations with constant coefficients. Each
one of these equations involves first-order derivatives with respect to position. The relationships given for
the dynamic loading case in the Laplace space in Temel and Calim (2003) are modified to be used for the
viscoelastic material cases. In matrix notation, Eqs. (31a)—(311) can be expressed as

T2 _F(p V(9.2 + B2 (32)
For the case of spatial bar, the elements of state vector are defined as
Y(¢.2) = {U(¢,2), Q(¢,2), T(¢,2), M($,2)}' (33)

The complementary functions method is based on the principle of solving Eq. (33) with the aid of initial
conditions. This method is basically the reduction of two-point boundary value problems to the numerical
solution of initial-value problems which are much more suitable for programming. The general solution of
Eq. (33), is given by

12

Y($.2) = Cu(0"(6,2)) + V(0,2) (34)

m=1

where U(m)(d)iz) is the complementary solution such that its mth component is equal to 1, whereas all the
others are 0. V(¢, z) is the inhomogeneous solution with all 0 initial conditions, the integration constants C,,
will be determined from the boundary conditions at both ends.

8. Determination of the dynamic stiffness matrix

The element equation is given in the Laplace domain by

{p} = [kl{d} +{/} (35)

There are six degrees of freedom at each node, three of these six are translations and others are rotations.
Letting i stand for the beginning and ; for the end of an element, the end displacements and the end forces
are given as
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{d}" = {U(¢;.2),Q(¢,,2), U($,,2), Q(¢;,2)} (36)

{P}" = {T(¢,2), M($,,2), T(,2), M(6,,2)} (37)

In order to determine the element stiffness matrix, the end displacements of the element as defined in (36)
are equated to unity for any one of the 12 directions while keeping the others 0. This is done 12 times using
each equation. From the homogeneous solution of the system (31), the element end forces are obtained, and
these forces are incorporated into the element dynamic stiffness matrix.

The fixed-end forces are computed from (31) by taking all the end displacements to be equal to 0 as

{i}T = {_T(¢i72)7 _M(¢ivz)’T<¢j’2)7M(¢jaz)} (38)

B(t)

d P(t)
v P
Cross-section
t(sec.)
Step Load
P(t)
Pﬂ
0.1 t(sec.)
Rectangular Impulsive Load
$=0
(@) (b)

Fig. 3. (a) A cantilever helical rod; (b) type of dynamic loads.
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——e—— Present Study(DT=0.04; N=64) —>—— Present Study(DT=0.02; N=128 )
------ Present Study(DT=0.005;N=512)

16

14+

12

101

Nondimensional Uz displacement

0 0.2 0.4 0.6 0.8 1 12 1.4 1.6 1.8 2
Time (sec.)

Fig. 4. Vertical displacement versus time at the free end for step load.
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For the transformation to the common reference system, the following equations are used

UCJ ijk — [T]T U}J tnb 7]

(Y =TT Yo

where the transformation matrix [7] is given by

and [B] is defined in Eq. (29).

Nondimensioanal Uz displacement

Nondimensional Uz displacement

18

16

14 A

12 A

10 1

18

164

144

124

101

‘ —%— ANSYS(DT=0.04) —A— ANSYS(DT=0.02)
------ ANSYS(DT=0.005) ANSYS(DT=0.0003)
f
!
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (sec.)

Fig. 5. Vertical displacement versus time at the free end for step load.

Present Study (DT=0.04) —e— ANSYS (DT=0.0003) ]
0 0.2 0.4 0.6 0.8 1 12 1.4 16 1.8 2
Time (sec.)

Fig. 6. Vertical displacement versus time at the free end for step load.

1615

(41)
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In this study, both the element dynamic stiffness matrix |k] and the fixed-end forces {f} are determined
by solving Eq. (31) by the complementary functions method in the Laplace domain. The system of
equations of motion can then be assembled from the element dynamic stiffness matrices and end forces as

[K(z){D} = {P(z)} (42)
where [K(z)] and {P(z)} are the system dynamic stiffness matrix and the load vector. {D} is the vector of
unknown displacements of the system.

9. Verification of the proposed model

An elastic cantilever helical rod shown in Fig. 3 is analyzed first to determine the effect of time increment
and Laplace transform parameter. The vertical displacement of the free end under a step load is presented
in Fig. 4. It is obvious that results obtained using a coarse time increment (D7 = 0.04) along with fewer
Laplace transform parameter overlap exactly the results obtained using finer increments and higher
parameters which indicates the efficiency of the present model. Fig. 5 shows the displacement results ob-

20
------ Static — — — Quasi-Static (lamda=0.002)

€ 18 Elastic-Dynamic ——— Viscoelastic (lamda=0.0002)
UEJ ———e—— Viscoelastic (lamda=0.002) ——a—— Viscoelastic (lamda=0.02)
o 16
8
5 14
2
T 12
N
2 10
©
2 /
g 61/
E Ll
gLl
Zz 2

0 T T T T T T T T T

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 18 2

(a Time (sec.)

1.0

-3.5 1

Nondimensional Tz shear force

------ Static Elastic-Dynamic
-4.0 ———— Viscoelastic (lamda=0.0002) ————— Viscoelastic (lamda=0.002)
——=a—— Viscoelastic (lamda=0.02)
-45 T T T T T T T T T
0 0.2 0.4 0.6 0.8 1 12 14 1.6 18 2
(b) Time (sec.)

Fig. 7. (a) Vertical displacement versus time at the free end for step load. (b) Vertical shear force versus time at the fixed end for step
load. (c) My moment versus time at the fixed end for step load. (d) Mz moment versus time at the fixed end for step load.
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------ Static Elastic-Dynamic
2 ———— Viscoelastic (lamda=0.0002) Viscoelastic (lamda=0.002)
——a—— Viscoelastic (lamda=0.02)
€
5]
£
o
IS
>
=
©
c
o
X7]
c
7]
£
k]
c
o
z
0.8 1 1.2 14 1.6 18 2
(c) Time (sec.)
3
...... Static Elastic-Dynamic
——— Viscoelastic (lamda=0.0002) Viscoelastic (lamda=0.002)
- —=—— Viscoelastic (lamda=0.02)
c 24
(]
£
o
£
N
=
s A A
S Y
o
5 ¥ v
c
[4]
£
k=]
c
o
z
-3 T T T T T T T T T
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2
(d) Time (sec.)

Fig. 7 (continued)

tained via the finite element program ANSYS ' using 81 straight-beam elements. It can be seen that time
increments of 0.005 and finer had to be considered for consistent results. The comparison of proposed
model with ANSYS is done in Fig. 6. An exact match is obtained by using a single element and a time
increment of 0.04 in the present model as opposed to 81 elements and much finer increment of 0.0003 in
ANSYS. The material and geometric properties used are: d =12 cm, o= 25.52°, a =200 cm,
E =2.06 x 10" N/m?, p = 7850 kg/m* and v = 0.3.

10. Numerical example

In this study, a general-purpose computer program is coded in FORTRANT77 for time-dependent loads
to analyse quasi-static and dynamic response of cylindrical helical rods made of linear viscoelastic mate-
rials. Butcher’s fifth-order Runge—Kutta algorithm in Chapra and Canale (1998) is used for the solution of
the initial-value problem based on the complementary function method. Forty steps of integration are used

1 ANSYS Swanson Analysis System, Inc., 201 Johnson Road, Houston, PA 15342-1300, USA.
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in the analysis. The Durbin’s inverse Laplace transform (see Appendix A, Durbin, 1974; Narayanan, 1979)
is applied for transformation from the Laplace domain to the time domain.
The viscoelastic characteristics of the rod material is denoted in the form by Kiral et al. (1976)

G(1) = Gy[1 + BExp(—t/1)],  K(t) =Ko (43)
with their Laplace transforms

_ 1 B — Ky

G(z) =Gy - 1) K(z) = ~ (44)

where 4 (lambda) is the relaxation time, Gy is the elastic shear constant, K is the elastic bulk modulus and
B =20.

Example 1. A cantilever helical rod is now considered. The parameters used in this example are those used

by Temel and Calim (2003) for the elastic material. Various dynamic loads are applied on the free end of the
rod. Material and geometrical properties are: d = 12 cm, o = 25.52°, a = 200 cm, E = 2.06 x 10'" N/m?,
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Fig. 8. (a) Vertical displacement versus time at the free end for rectangular impulsive load. (b) Vertical shear force versus time at the
fixed end for rectangular impulsive load. (c) My moment versus time at the fixed end for rectangular impulsive load. (d) Mz moment
versus time at the fixed end for rectangular impulsive load.
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p = 7850 kg/m?® and v = 0.3 (see Fig. 3). Various dynamic loads with the amplitude Py = 10° N are applied

vertically at the free end of the rod. A time increment Af¢ of 0.02 s is used in the calculations.
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Fig. 8 (continued)
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Fig. 9. (a) A fixed-ended helical rod; (b) type of dynamic loads.
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Non-dimensional vertical displacement at the free end and non-dimensional shear force, bending mo-
ment at the fixed end are shown in Figs. 7a—d and 8a-d for different loading cases.

The figures include, static, elastic-dynamic, quasi-static and viscoelastic cases for various damping ra-
tios. As expected, the elastic-dynamic response oscillates about the static state. The quasi-static response
approaches the static state with time. In the viscoelastic case, the response of the bar dies out with time. The
effect of the damping ratio is obvious; increasing the damping ratio causes the response to reach the static
response much faster.

The dynamic behaviour of the viscoelastic helical bar will eventually disappear and it will approach the
static state. The moment Mz is equal to 0 under static loads. However, in the case of dynamic loads, due to
inertia forces it assumes values different from 0 (see Figs. 7d and 8d).

Example 2. A fixed-ended helical rod shown in Fig. 9 is now considered. The rod has a circular cross-section
with the diameter d = 12 cm. The pitch angle and radius of the helix circle are chosen as o = 25.52° and
a =200 cm, respectively. Material properties are: E = 2.06 x 10! N/m?, p = 7850 kg/m® and v = 0.3.
Various dynamic loads with the amplitude Py = 5 x 10° N are applied vertically on the arc-length mid-point
of the rod. A time increment A¢ of 0.02 s is used in the calculations.
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Fig. 10. (a) Vertical displacement versus time at the arc-length mid-point for step load. (b) Vertical shear force versus time at the fixed
end for step load. (c) My moment versus time at the fixed end for step load. (d) Mz moment versus time at the fixed end for step load.



B. Temel | International Journal of Solids and Structures 41 (2004) 1605-1624 1621

0.1
+~ 007
c
@
g -0.1 1
IS
>
= -0.2
©
5
S .03
c
@
£ 041
5
c
[ Static Elastic-Dynamic
Z -051 % Viscoelastic (lamda=0.0002) Viscoelastic (lamda=0.002)
——a—— Viscoelastic (lamda=0.02)
-0.6 T T T T T T T T T
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
(c) Time (sec.)
S
@
£
IS
£
N
=
©
c
S
‘B
c
@
£
e}
c
S
e s Static Elastic-Dynamic
-0.2 —»— Viscoelastic (lamda=0.0002) Viscoelastic (lamda=0.002)
——=a—— Viscoelastic (lamda=0.02)
-0.3 T T T T T T T T T
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
(d) Time (sec.)

Fig. 10 (continued)

Non-dimensional vertical displacement at the arc-length mid-point of the rod and non-dimensional
shear force, bending moments at the fixed end are shown in Figs. 10a—d and 11a—d for different loading
cases.

The conclusions derived from the previous example can be reiterated here in that the dynamic behaviour
of the viscoelastic helical bar will also eventually disappear and it will approach its the static state. It should
be emphasized again that the aim of the present work is to demonstrate the application of an efficient
method to the viscoelastic case rather than reconfirming the expected viscoelestic response of helical bars.

11. Discussions and conclusions

The quasi-static and dynamic response of cylindrical helical rods made of linear viscoelastic materials are
investigated using an efficient method of analysis in the Laplace domain in this study.

The dynamic stiffness matrix has been calculated in the Laplace domain by applying the complementary
functions method to the differential equations in canonical form. This provides great convenience in the
solution of the physical problems having general boundary conditions. Another advantage of using the
complementary functions method-based solution is that the helical rods with variable cross-section and
geometry, which yield ordinary differential equations having variable coefficients, can also be considered.
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Fig. 11. (a) Vertical displacement versus time at the arc-length mid-point for triangular impulsive load. (b) Vertical shear force
versus time at the fixed end for triangular impulsive load. (c) My moment versus time at the fixed end for triangular impulsive load.
(d) Mz moment versus time at the fixed end for triangular impulsive load.

The differential equations can be solved by using the complementary functions method with sufficient
accuracy as required with an appropriate integration step-size.

The quasi-static and dynamic behaviour of cylindrical helical rods are investigated by using the Boltz-
mann-Volterra theory for viscoelastic materials. The dynamic behaviour of the viscoelastic helical bar will
disappear after some time, approaching the static state. The time to reach the static behaviour is pro-
portional to the damping coefficient. The damping effects in viscoelastic material reduce the peak values of
the dynamic response.

Appendix A. Modified durbin’s inverse Laplace transform method

A numerical inverse Laplace transform technique is necessary to obtain the values in the time domain.
For this purpose, Durbin’s inverse Laplace transform technique based on the fast Fourier transform (FFT)
is used by Durbin (1974). Durbin’s formulation for inverse Laplace transform is summarized as follows:

2eM | ] = \
|~ 3Re{F (@)} +Reg > (Flzi)Li)e x| (j=0,1,2,...,N—1) (A.1)

k=0

() =
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Fig. 11 (continued)

in which z; = a + 1k 27", N = T /At where z; is the kth Laplace transform parameter, T is the solution interval
and At is the time increment. The selection of constant ‘a’ in numerical inverse Laplace transforms is ex-
plained in Durbin (1974). It is implied that if the value of ‘a7’ is chosen in the range 5-10, good results are
obtained. Therefore, for the numerical examples presented in this paper the value of ‘a7’ is generally taken
as ‘6’. Finally, results can be modified by multiplying each term Lanczos (L;) factors to obtain better results
in the Laplace domain as suggested by Narayanan (1979).

LG A2
%) a2

when k=0, Ly = 1.
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